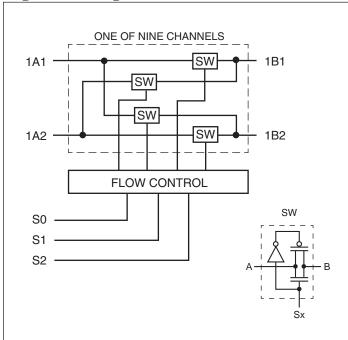


3.3V, 18-Bit Bus Exchange $NanoSwitch^{TM}$


Product Features

- Near-zero propogation delay
- 5-ohm switches connect inputs to outputs
- Fast switching speed: 5ns (max.)
- Operating Range: 3.0V to 3.6V
- Packaging (Pb-free & Green Available):
 - 48-pin, 240-mil wide thin plastic TSSOP (A)

Description

The PI3B16209 is a 3.3 volt, 18-bit bus exchange switch designed with a low On-resistance (5-ohm) allowing inputs to be connected directly to outputs. The device operates as either an 18-bit bus switch or as a 9-bit exchanger, providing data exchange between four signal ports via the data select pins (S0-S2).

Logic Block Diagram

Truth Table⁽¹⁾

Function	S2	S1	S0	A1	A2
Disconnect	L	L	L	Z	Z
A1 to B1	L	L	Н	B1	Z
A1 to B2	L	Н	L	B2	Z
A2 to B1	L	Н	Н	Z	B1
A2 to B2	Н	L	L	Z	B2
Disconnect	Н	L	Н	Z	Z
A1 to B1, A2 to B2	Н	Н	L	B1	B2
A1 to B2, A2 to B1	Н	Н	Н	B2	B1

Pin Configuration

S0 E	10 0	48 S1
1A1 🗆		47 S2
1A2 🗆	3	46 1B1
GND	4	45 1B2
2A1 🗆	5	44 b 2B1
2A2 [43 2B2
VCCE		42 GND
3A1 🗆	8	41 3B1
3A2 [9	40 3B2
GND	10	39 GND
4A1 🗆	11	38 4B1
4A2 [12	37 dB2
5A1 🗆	13	36 5B1
5A2 [14	35 5B2
GND [15	34 GND
6A1 🗆	16	33 6B1
6A2 [17	32 6B2
7A1 🗆	18	31 7B1
7A2 [19	30 7B2
GND	20	29 GND
8A1 🗆	21	28 B1
8A2 [22	27 BB2
9A1 🗆	23	26 9B1
9A2 🗆	24	25 p 9B2

Pin Description

Pin Name	I/O	Description
S0-S2	I	Select Inputs
xAx	I/O	Bus A
xBx	I/O	Bus B

06-0221 1 PS8192J 02/13/07

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

5 1	2
Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	-0°C to +85°C
Supply Voltage Range	0.5V to +4.6V
DC Input Voltage	0.5V to +4.6V
DC Output Current	120mA
Power Dissipation	1.0W

Note:

Stresses greater than those limited under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated inthe operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 3.0\text{V}$ to 3.6V.)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	Guarantee Logic HIGH Level	2.0			* 7
$V_{ m IL}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I_{IH}	Input High Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
${ m I}_{ m IL}$	Input Low Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ
I_{OZ}	High Impedance Output Current	$0 \le A, B, \le V_{CC}$			±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V
R _{ON}	Switch ON Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0.0V I_{ON} = 48mA$		5	8	Ω
		$V_{CC} = Min., V_{IN} = 2.4V I_{ON} = 15mA$		10	15	

Notes:

- 1. For Max. or Min. conditions, use appropriatr value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loafing.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

Capacitance (TA = 25° C, f=1 MHz)

Parameters ⁽¹⁾	Descriptions	Test Conditions	Тур	Units
C_{IN}	Input Capacitance		3	
C_{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	14	рF
C _{ON}	A/B Capacitance, Switch On	IIV V	30	P-

Note:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Conditions		Min.	Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max$	$V_{IN} = GND \text{ or } V_{CC}$			10	
							μΑ
ΔI_{CC}	Supply Current per Input @ TTL	$V_{CC} = Max$	$V_{IN} = 3.0V^{(3)}$			750	
	HIGH						
I_{CCD}	Supply Current per Input per MZ ⁽⁴⁾	$V_{CC} = Max_A \& B$				0.25	mA/
		Pins Open					MHz
		Control Input					
		Toggling					
		50% Duty Cycle					

Notes:

- 1. For Max. or Min. conditions, use appropriatr value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (control input only); A and B pins do not contribute to I_{CC}.
- 4. This current applies to the contol inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design

Switching Characteristics over Operating Range

0	1	, ,			
Parameters	Description	Conditions	C	Com.	
1 di dineter 5	Description	Conditions	Min.	Max.	Units
$t_{\rm PLH}$	Propagation Delay ^(1,2)	$C_L = 50pF$		0.25	
$t_{ m PHL}$	Ax to Bx or Bx to Ax	$R_{\rm L} = 500$ -ohm			
t _{PZH}	Bus Enable Time	$C_L = 50 pF$	1	4.5	ns
t_{PZL}	Sx to Ax or Bx	$R_{\rm L} = 500$ -ohm			
t _{PHZ}	Bus Disable Time	R = 500-ohm	1	5	
$t_{\rm PLZ}$	Sx to Ax or Bx				

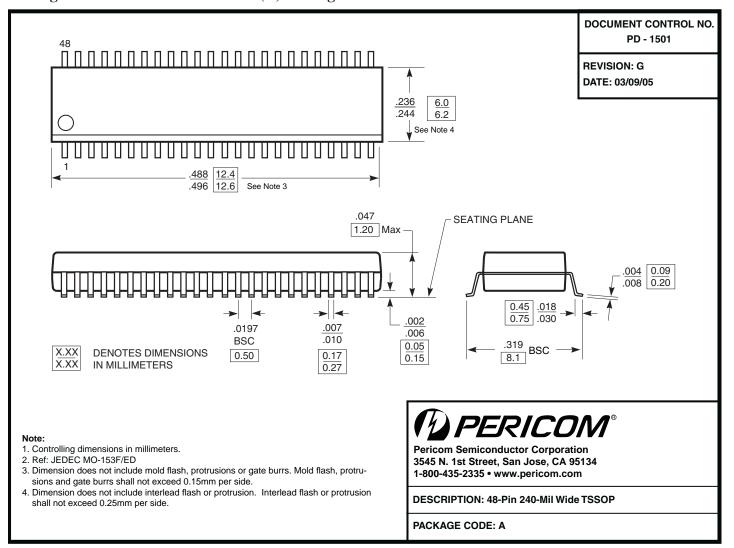
Notes:

- 1. This parameter is guaranteed but not tested on Propogation Delays.
- 2. This bus switch contributes no propogational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for tihe switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propogational delay to the system. Propogational delayy of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with tthe load on the driven side.

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For Example, given a +3.3V supply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail[®] minimizes power consumption.


Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply VCC and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Package Mechanical: 48-Pin TSSOP (A) Package

Ordering Information

Ordering Code	Package Code	Package Description
PI3B16209A	A	48-pin 240-mil wide TSSOP
PI3B16209AE	A	Pb-free & Green, 48-pin 240-mil wide TSSOP

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com